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Abstract. The microscopic theory of .the time evolution of an interacting Bose gas being 
cooled to the temperature T <  T, is presented. The considerations are based on the exact 
(in classical limit) equations of motion derived by J S Langer. It is shown that at the initial 
stages of relaxation the sharp peak appears at the low energy tail of the distribution 
function. The following time evolution of this peak leads to a S function formation. When 
this peak is too narrow the Boltzmann equation we use is no longer applicable and one 
must apply the exact equations of motion or the quasi-Boltzmann equation derived in this 
work which takes into account the coherent effects. The evolution of the distribution 
function and of the energy spectrum in the system is given by the solution of the equation 
of motion. 

The development of a new phase is of explosive character and has a lot of features in 
common with instabilities in non-linear plasmas, optics, etc, and thus is of quite a general 
nature. In addition i t  is shown that the phenomenological models widely used for the 
description of the dynamics of the A-transition in a critical region can be derived from 
microscopic equations of motion. 

1. Introduction 

In  this paper we present a microscopic theory of the non-linear dynamics of phase 
transformations (e.g., the A -transition in helium) with the smooth (in time) 
appearance of superfluidity in the system. This work is based on exact (in classical 
limit) microscopic equations of motion for bosons derived by Langer (1968-1969) in 
the coherent states representation. The general concepts developed in our work may 
also be applied to a wide class of second-order phase transitions, such as occur in 
quantum spin systems. This is true, since it is possible to treat the quantum spin 
system phase transitions as a generalised Bose condensation. Rigorous proof of the 
last statement is given by Goldhirsch ef al. (1978). 

Remarkable progress has been achieved during the last decade in the theory of 
critical dynamics. The bulk of the work has been based, so far, upon two related 
phenomenological approaches, mode-mode coupling theory and Onsager-type irre- 
versible equations of motion, with the renormalisation group treatment subsequently 
applied (Halperin et a1 1974, 1976, Kawasaki 1976, Hohenberg and Halperin 1977). 

These approaches have led to the explanation of a great variety of experimental 
data and pointed out some general features of dynamics in systems near to the critical 
point. Despite these unquestionable achievements one might notice that, so far, 
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phenomenological models in the theory of critical dynamics have not explained some 
important experimental facts, for example the behaviour of the density-density cor- 
relation function for a A-transition. Thus it is desirable to develop a microscopic 
theory of critical dynamics which would support the phenomenological models and to 
understand the critical dynamics in more detail. Several attempts have been made, 
but the consistency of the microscopic and phenomenological approaches is not yet 
rigorously proved. 

However, there is another dynamic problem of phase transitions which is only 
slightly touched upon by investigators and which is far from being understood. All the 
theories quoted above consider the response of the system in the critical region with 
respect to perturbations which keep the temperature unchanged. 

The  initial temperature of the system and the final one, when it relaxes back to 
equilibrium, are the same. They are both either above the critical temperature or  
below it. In other words, in these theories perturbation does not lead the system 
through the critical point. The  most common feature of relaxational processes consi- 
dered in the critical region is the critical slowing down: the relaxation time goes to 
infinity when T + T,. 

O n e  may ask several very different questions, with respect to the dynamics of 
phase transitions. What would happen to the system which initially is at  a temperature 
above T, and which is perturbed in such a way that finally it comes to equilibrium at a 
temperature below T,? For example, we can instantaneously take a certain amount of 
heat from the system or  put it into contact with a heat bath at a temperature below T,. 
The trivial answer to this question is the following. In the course of relaxation to the 
new state of equilibrium a new phase should be developed which would mean that a 
phase transition has occurred. Thus the system acquires drastically new properties, 
such as superfluidity, etc. A much more complicated answer would follow if we were 
interested in the time development of this process, in a time evolution of the system 
which leads to the appearance of new coherent qualities in it. The  attempt to answer 
these questions is the main subject of this work. 

So far only a few papers relating to this problem have appeared. Some of them 
consider the time-dependent Landau-Ginzburg model (Kawasaki 1977, Kawasaki er 
a1 1978) o r  phenomenological Fokker-Planck-type equations (Suzuki 1976, 1977)- 
the models without conservation laws. These works have not led to  the solution for 
the final stage of relaxation to equilibrium. O n e  should recall that in conventional 
critical dynamics the conservation laws are of utmost importance and make the 
dynamics very different in comparison with purely relaxational models without 
conservation laws. O n e  may expect that in the case of the passage of the system 
through the critical point the dynamics will be different for realistic systems with 
conserved integrals of motion and purely relaxational models. 

In another series of papers the kinetics of Bose condensation in simple models of 
ideal and weakly interacting Bose gases is considered (Zeldovich and Levich 1969, 
Coste and Peyraud 1975, Chaplin er a1 1974, Levich and Yakhot 1977a,b).  
However, the Boltzmann equations used in these papers are not applicable for the 
final stage of the process, though they indicate the smooth (in time) appearance of 
coherence in the system. Besides, this treatment was valid only outside the critical 
region, when both initial and final temperatures were far from T,. 

In this work we extend our treatment so that it is appropriate in the critical region 
and at  all stages of coherence that appear in the system in the course of a phase 
transition. It will be shown that the time evolution of a Bose system with the 
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subsequent appearance of superfluidity (Bose condensate) has many features in 
common with some general processes displaying instability, such as interacting waves 
in optics, non-linear plasmas, etc. Therefore, our results may be of quite a general 
nature. 

Finally, we will show how to derive the Halperin er a1 (1976) phenomenological 
equations for the dynamics of helium, based on the initially purely microscopic 
Hamiltonian. The general scheme is valid for spin systems also. The appropriate 
development for the Ising and Heisenberg models will be published elsewhere. 

2. The equations of motion 

In this work we consider the dynamics of an interacting Bose gas in contact with a 
model heat bath of infinite heat capacity. We can write the Hamiltonian of the 
system : 

H=HBB+HBT (2.1) 

1 
H B T  = - vzzh:,6K2d~36~4, v K l + K z = K 3 + K 4  

The operators hk, iK and 6:, 6~ correspond to Bose and model heat bath particles 
respectively. H B B  describes the interaction between Bose particles, while HBT cor- 
responds to Bose gas-heat bath interactions. We assume a usual approximation for 
the matrix elements of interaction: 

U22 = 5 U(r)ecp (i (KI +K*-K3 -K4)r dr  = U. ) 
(2.2) 

) 
i V 2 2  = 5 V ( r )  exp ( h  ( K ,  + KZ - K3 - K4 dr  = Vo. 

Let us introduce the coherent states representation (Langer, 1968, 1969, Klauder 
1960) useful for the Bose systems: 

hlA) = alA); (Ala* t /  =(Ala*  (2.3) 
where a and a' are complex numbers defining the eigenstates of operators d and ht, 
and the wavefunction of the system 

From the definition (2.3) one can see that to write the Hamiltonian in the coherent 
states representation it is necessary to substitute in the Hamiltonian the complex 
numbers a and a* ,  instead of the operators d and d' respectively. Then in the 
classical limit, h + 0 ,  one can write the Hamiltonian equations of motion (Langer 
1968, 1969): 
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where H(+, +*) is the Hamiltonian H B B  in the coherent states representation. 
Similarly we may consider b 3 , ,  in HBT as some classical field M ( K ,  K ' )  and treat the 
HBT part of the interaction in the same way. Then we will have the following 
Hamiltonian equation of motion for the coherent states u K :  

(2.7)t 

One may notice that the free part in equation (2.7) can be absorbed easily in the phase 
of UK, so that equation (2.7) can be rewritten 

where w(K) = hK2/2m. If the coupling constants are small or the system is diluted 
one can easily derive the Boltzmann kinetic equation from (2.8). Assuming that the 
time of evolution is large so that 

( W 1 + W 2 - W 3 - W 4 ) f  (2.9) 

and phases of a, a* are random, i.e. 

( a g l a K 2 )  = laKl/ '  S(K1 -K2). (2.9') 

One would readily derive the Boltzmann equation for the distribution function nK = 
1 ~ ~ 1 ~  (Sagdeev 1973): 

a n K  

at 
-- - IBB + IBT (2.10) 

- nK3nK4(nK1 + n K J .  (2.11) 

The form of I B B  depends, generally speaking, on the properties of the heat bath. In a 
particular case when we assume the heat bath to be a Fermi gas with the distribution 
function N ( K )  

(2.12) v; 
IBT = -7 1 ~ K ~ + K Z = K ~ + K ~ S  (W 1 f W 2  - - 

!2 )nK1 nKI(NK2 - NK2). hV 

One may notice that in the Boltzmann equations (2.10)-(2.12) derived from equation 
of motion (2.7) we have induced scattering terms only and no spontaneous terms at 
all. This is certainly due to the classical nature of equation (2.7). If one would like to 
take into account spontaneous terms as well, a slightly different method of derivation 
of the Boltzmann equation can be applied. We can write in a straightforward way in 

t We deliberately left h in front of the left-hand side in ( 2 . 7 )  so as to give to Hamiltonian equations of 
motion the form of the non-linear Schrodinger equation. Such a form is convenient in various applications 
and does not contradict the classical nature of Hamiltonian equations. 
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the second-order perturbation expansion: 
.= 

(2.13) 

where 6~ = daK. Equation (2.13) contains the time-dependent part of the inter- 
action operator which is proportional to exp[i(wl + w 2  - w 3  -w4)f]. If condition (2.9) is 
fulfilled, that is the process is slow, the phases change many times during the time of 
the process and thus we can again apply the random phase approximation (RPA). 

Subsequently we derive from (2.13) a Boltzmann equation which consists of both 
spontaneous and induced terms. For example for I B B  

(2.14) 

What would happen if condition (2.9) was not fulfilled? Then the random phase 
approximation is not valid any more since violation of (2.9) means an appearance of 
coherence in the system. With respect to the coherent system one may consider 
different extreme situations. Assume, for example, that our system consists of an 
infinite number of modes concentrating in a narrow energetic interval. In this case 
one can apply the opposite approximation to (2.9) for the scattering processes within 
this narrow interval. i.e. 

( w l + W 2 - 0 3 - W 4 ) t < <  1. (2.15) 

Here we assume that the process is fast and the system has strong temporal 
coherence. If we assume that our system is isotropic and stable with respect to spatial 
perturbations, then we may still use the approximation of random phases but not 
make time t +w ,  as is done in the derivation of the Boltzmann equation. It is still 
possible to decouple the four amplitude correlators into pair correlators, the step 
which is crucial in the derivation of the Boltzmann equation. The expressions for the 
collision term would become in such approximations 

+n(Kz)n(K4>(n(Ki)-n(K3))1. (2.16) 

Instead of 6 ( w l  + w 2  - w 3  - w 4 )  in the Boltzmann equation we have in approximation 
(2.15), the time factor t .  If one tries to solve equation (2.16), condition (2.15) should 
not be forgotten. It is well known from general statistical physics that the derivation 
of the Boltzmann equations contains an inconsistency. Namely, the dispersion rela- 
tion w ( K )  is kept unchanged, being that of the free particles. This is certainly a bad 
approximation in the cases in which the interaction is strong. It is also bad for 
processes described by the quasi-Boltzmann equation (2.16). Indeed this kinetic 
equation was derived on the assumption that the relaxation was very fast, using the 
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perturbation theory.  In cases when perturbation is not small but acts for a short time 
we should have, in accordance with the uncertainty principle, an uncertainty of energy 
in a final state AE = h / t .  This may be interpreted in classical terms as a non-linear 
shift of the frequency due to interaction, as in the case of non-linear parametric 
resonance in classical mechanics. This circumstance is of the utmost importance for 
the problem considered in this paper, as we shall see from the development. It will be 
shown that at the last stages of relaxation with the new phase formation the processes 
are of an explosive character and the interaction, even if it was initially small, becomes 
very strong in the narrow range of K. This, of course, affects the dispersion relation 
which cannot be considered the same as it was in the system with weak interaction. 
The very interesting property of equation (2.16) is that i t  easily provides us with the 
time scale of the process independently of the initial shape of the distribution. Indeed 
with the help of the invariant number of particles, No, which is the integral of motion, 
we can introduce (only one) dimensionless time, T = t (UoNo/hV),  so that it is easy to 
conclude that the time scale of the process governed by (2.16) is 

(2.17) 

We should like to emphasise that equation (2.16) is definitely not always applicable. 
The coherence, in general, may create non-uniformity and non-isotropy in the system. 
Then condition of stochasticity may not be fulfilled (Lvov and Rubenchik 1977). In 
other words equation (2.16), as it was pointed out above, corresponds to the approx- 
imation when we take care of temporal coherence only, and neglect the effect of 
spatial coherence. .i. 

As to the general properties of equations (2 .5 ) ,  (2.14), (2.16) we may state the 
following: 

(1) All of them conserve the total number of particles. 
(2) All of them conserve the total energy of the system. 
(3) The equilibrium solution of (2.14) above T, is 

(4) Below T, equation (2.5) is indeed appropriate to describe superfluidity since 
it is identical to the usual hydrodynamical equations for superfluid motion (Langer 
1968, 1969). The spectrum of excitations which follows from (2.5) is w = cK. 

With respect to hydrodynamical modes in the system above T, one may 
notice the following. As was mentioned above, the loss of information about the 
evolution of the dispersion relation due to interaction occurs in the transition from 
reversible Hamiltonian (equation (2.5)) to irreversible Boltzmann equation. What is 
usually done in such a case, is that, after the Boltzmann equation is solved, the poles of 
the corresponding response function (the dielectric function in plasma physics) should 
be looked at. They determine the diffusion spectrum, sound wave spectrum, etc. 
Alternatively, one can introduce into the left-hand side of the Boltzmann equation the 
mean-field terms (Vlasov terms in plasma physics terminology). These are the two 

+ Note added in proof. In the general case when the non-linearity in the system is large and yet the system is 
stochastic due either to the stochastic initial conditions or to random interactions with an external field, the 
situation is much more complicated and akin to the strong turbulence. One should pass over to the 
Dyson-Wild equations. (Zacharov and Lvov 1975). 

( 5 )  
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usual ways to extract the hydrodynamical modes from the Boltzmann equation (Ma 
and Senbetu 1977, Sak 1976). Another way of introducing the hydrodynamics into 
the problem is to d o  it by perturbation methods using the Hamiltonian equations of 
motion. If one  calculates the new vertex perturbatively then, after some calculation, it 
will consist of only two terms (Kwok and Martin 1966). One  is the structureless 
constant of interaction U. and the other, with structure, having poles on  the imaginary 
axes, and proportional to U:. The position of the poles defines the diffusion part of 
the spectrum o = iDK2.  Subsequently, the diffusion can be attributed to the self- 
energy part G‘ of the propagator: 

A2K2 + iDK2. 
1 - a r + w - -  

G’ 2m 
(2.18) 

Thus the dynamic equation, corresponding to this corrected ‘free’ propagator is: 

irzaa, K 2  
-= ( r+ -+ iDK2 U,*UE*;~UK~UK~. 

a t  2m 
(2.19) 

Im U,* # 0 now. The  Boltzmann equation contains a new non-linear term (see 
S; 6): 

* = ( h  r-DK2)(nK-nKeq)+nK 1 Im U,* (K, K’)nK’+IBB (2.20) 
at 

where the appearance of n~~~ is the result of the noise source which we have to 
introduce in order to obtain a non-zero equilibrium solution. If we are close to 
equilibrium then ZgB is not important since the role it plays is already contained in the 
constant Im r. In the opposite case, when we are far from equilibrium, the I B B  term is 
dominant In general when the RPA is not applicable and the system is far from 
equilibrium, its evolution is described by (2.19) with the dominant non-linear inter- 
action o r  the equivalent Dyson-Wild equations. 

What would be changed in the previous considerations if we move into the critical 
region? It is clear that we should modify the equations of motion to  take care of 
equilibrium critical fluctuations which are important when the temperature is close to 
T,. In order to do i t  we shall make use of the Halperin-Hohenberg-Siggia (HHS) 
phenomenological model (Halperin et a1 1976), in a slightly different form, con- 
venient for our purposes. This model describes helium by means of the following two 
dynamic equations for the order parameter $ and the field m coupled to $: 

ac/, SF SF - = To *+ igo$-+ e 
a t  84 Sm 

am SF 
at Sm 

-=AoV2-+2goIm 

(2.21) 

(2.22) 

where the free energy: 

and e and 6 are the noise sources. 
First of all let us show briefly that equations (2.5) and (2.6), which are the exact 

microscopic equations, can be used in order to derive the phenomenological model of 
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HHS. To do it we multiply equation (2.5) by $* and equation (2.5) by $ and find 

(2.5') 

If we denote l $ I 2  by m, then the equation for m is similar to (2.22) for the auxilary 
field coupled to $ except for the diffusion term AV2($$*) (Halperin et a1 1976). This 
term, as well as the noise cannot appear from the microscopic Hamiltonian equation 
of motion since they are purely dissipative in nature. However, it does appear after 
the first step of iteration in the RGA as one can see from equation (3.12) (Halperin et a1 
1976). Analogously, after the first step of iteration the coefficients of the linear terms 
in (2.5), (2.6) become complex and the hamiltonian acquires the form of the free 
energy functional (2.23). Subsequently equations (2.5) and (2.6), become similar to 
that in the HHS model. I t  is essential that in the course of renormalisation the density 
m becomes more singular than l $ 1 2 .  Consequently in a renormalised system the 
density of particles cannot be represented as 1 $ 1 2  any more, even if m = 141 initially.? 
In the course of renormalisation equations (2.21) and (2.22) acquire very complicated 
forms. However, in terms of the E = 4 - d expansion they keep their form invariant 
with the altered parameters (Halperin et a1 1976). We do not dwell upon these 
complicated matters and assume that the conclusions stemming from the HHS model 
are correct and coincide with those which could have been obtained, in principle, from 
equation (2.5) without recourse to the HHS model. The way to do it is indicated by 
Halperin et a1 (1976) and consists of steps leading to equation (2.19) with subsequent 
application of the RGA. The latter should lead to the same value for kinetic 
coefficients as those obtained from the HHS model. The vertex will again consist of two 
terms in the first-order in the €-expansion. One is the structureless constant of 
renormalized interaction proportional to E and the other determines the dispersion 
relation for hydrodynamic modes. 

Finally we come to the conclusion that the equation of motion in the critical region 
can be written in the same form in the first order in the €-expansion as (2.19) but with 
the altered diffusion coefficient and interaction constant appropriate for the critical 
region 

2 

(2.24) 

o,, now contains an imaginary part (see 9: 6). In the critical region equation (2.24) 
gives the correct relaxation time for small perturbations close to equilibrium. 

It is important that, in the course of renormalisation, while deriving equation 
(2.24), only high-momentum modes K > 1/[ are being integrated out. These modes 
are considered to be close to equilibrium. On the other hand this equation is valid for 
long hydrodynamic modes K < 1/[ even if they are far from equilibrium, since no 
assumptions were made in the derivation of (2.24) as to the state of these modes. If 
the amplitudes of these modes are large and they are unstable, the non-linear inter- 
action becomes dominant and the above considerations with respect to non-equili- 
brium evolution are still valid. 

t This understanding of the inter-relation between equations (2.5). (2.6) and the HHS model was achieved 
with S Goldhirsch. 
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We should like to mention that the shortcoming of the derivation of the HHS model 
given above, is that we did not have noise sources in the final equations. These should 
evidently appear if one applies more general statistical methods (Mori 1965). 

To conclude this section we would like to mention that the reversible quasi- 
Boltzmann equation (2.16) resembles the approach used for calculation of the contri- 
bution to the heat conductivity caused by phonon scattering on the object with the 
short lifetime. In this case the energy conservation per collision was violated because 
of the uncertainty principle exactly as it is in the fast process of coherence appearance. 

3. Ideal Bose gas 

In this section we consider the simplest of possible models-a collisionless Bose gas 
which initially is at a temperature To> T,. This gas is being cooled by the heat bath at 
a temperature T F <  T,. The bath is assumed to have an infinite heat capacity. From 
thermodynamic considerations we know that Bose condensation must occur in the 
system if the number of particles is kept constant. Thus, it is our task to follow the 
time evolution of the distribution function of bosons from the initial equilibrium state: 

- 1  

n (w,  01 = [ e x p ( F )  - 11 

to the final state 

To do it  we must solve the Boltzmann equation (Levich and Yakhot 1977a, b): 

(3.1) 

(3.2) 

(3.3) 

The solution must conserve the total number of particles: 

1 n(w)w’/’ dw = N o  = constant. (3.4) 

The approximate procedure leads to a simplified equation for n(w,  t )  (Levich and 
Yakhot 1977a, b): 

where F ( t )  is an unknown functional of n(w,  t )  which ensures that (3.5) conserves the 
total number of particles: 

and all the other notations can be found in Levich and Yakhot (1977b). We can now 



2246 E Levich and V Yakhot 

write the solution of (3.5) and find the unknown functional F ( t )  from the normalisa- 
tion condition (3.4). For the large values of time t one obtains: 

at hw << T. 
This solution is obtained for initial condition (3.2) and leads to: 

when t +  CC. One can check easily that during the evolution condition (3.4) is fulfilled. 
If at t = 0 there is a finite fraction of particles already in condensate: 

the temporal evolution at large times is given by 

AatS(w)/w”’ 
+ B ( w ,  t )  n(E,i)=[ - 1 ( 3 ” ]  Aat+To-T (3.7) 

where B(w,  t )  describes fast relaxation of particles with large K to the Planck dis- 
tribution. 

One  can notice the important difference between (3.6) and (3.7). Expression (3.6) 
describes a process leading to a 6-function formation only when t + E. This means 
that the condensed phase cannot be formed. O n  the other hand (3.7) gives an 
absolutely different type of behaviour: the 6-function part of the distribution is always 
present but the mass of the condensed phase changes with time reaching the equili- 
brium magnitude m = 1 - (T/T,)3’2 at t >>(To- T ) / A a .  We can conclude that with the 
presence of nuclei of a new phase the transition takes a finite time while without nuclei 
the time is infinite. 

W e  would like to point out that the main feature of the dynamics of Bose 
condensation given by (3.6) is the growth of small momenta modes simultaneously 
with the width of the region in which growth occurs being diminished. This is the 
feature which does not exist in linear relaxational dynamics at all, and which makes 
the problem considered in this paper very different in comparison with quasi-equili- 
brium dynamics. Let us end our discussion of the ideal Bose gas with two comments 
which will prove to be important for further more complicated models: 

(1) If the final temperature is close to the critical temperature, 1 T F -  T,I << T,, then 
only small fraction of the particles is required to form the Bose condensate. In the 
ideal Bose gas this fraction is proportional to / T F -  T,I = 1/5, where 5 is the correlation 
length. Thus we may argue that initially during the linear stage of evolution only the 
modes n ( K  < 1/[) begin to increase while all others decrease. When n ( K  < 1/5) is 
well beyond an equilibrium value the evolution of these modes proceeds in accor- 
dance with the theory developed above. We will see that this comment is also of value 
for realistic models with interaction in the critical region. 

(2) The evolution given by (3.6) is unfortunately not always valid. 
It is easy to understand that when the width of the peak AEo is so narrow that 

condition (2.9), t > h/AEo, is no longer fulfilled we cannot use the golden rule which 
leads us to the Boltzmann equation. In other words, the system acquires coherence 
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which demands to be taken care of as was described in the previous section. It is 
remarkable that the Boltzmann equation which is, strictly speaking, not suitable to 
describe non-random systems has so much dynamics inherent in it that it still gives us 
the formal solution in the form of the appearance of a 8-function. 

4. Weakly interacting Bose gas: far from the critical temperature 

We now consider a system of weakly interacting Bose particles with the initial and 
final temperatures both far from the critical temperature: the system at a temperature 
above T, at t = O  is cooled to a temperature T, well below T,. Thus, at the present 
stage, we are not concerned with critical fluctuations and critical behaviour in the 
usual sense. In some respects this situation is similar to that investigated by Kawasaki 
et a1 (1978) when they tried to follow the temporal evolution of a system instan- 
taneously quenched to a temperature far below the spinodal decompositon point. 

To follow the appearance of the new phase we must solve equation (2.14). It is 
obviously a hopeless task to do it exactly and thus we will make certain simplifications 
based on physical considerations. 

At the initial moment, the collision integral ZBB corresponding to interaction 
between Bose particles is zero while the equilibrium with the heat bath is already 
broken (ZBT#O) .  We may conclude that the initial stages of relaxation can be 
described exactly in the way that was done for an ideal Bose gas until ZBB<< ZBT. If the 
perturbation is strong enough this relaxation leads to a considerable increase in the 
boson occupation numbers at small momenta with the subsequent appearance of a low 
energy peak in the distribution function. 

When this peak is developed ZBB plays the dominant role in the time evolution 
because it contains the induced scattering terms which are proportional to n while 
the Bose particle-heat bath interaction contains n i  only. From now on we can 
neglect lZBTl<< l IBBl  and consider the evolution which is governed by I B B  only. We 
make an additional assumption that the initial perturbation was so strong that this 
peak contains all the would-be condensate particles. Thus the distribution function 
consists of two parts: the high energy equilibrium Planck tail and low energy peak 
which tends to form a 8 function. The high energy part of the system serves as an 
additional heat bath for the relatively slowly developing condensed phase and its 
existence must be taken into account. It should be emphasised that this peak contains 
only the excess of particles which cannot be included in the Planck part of the 
distribution at a given temperature. Those particles have only one way to relax to 
equilibrium, i.e. to form a Bose condensate. Thus it is reasonable not to consider the 
processes which lead to the broadening of the peak but to leave only those terms of 
I,, leading to narrowing of the peak and its movement in the low energy direction, 
Thus we consider an equation 

where 8 ( h K )  is the Kronecker symbol. We have omitted the terms 

(4.1) 

with D > 0. 
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We see easily that this term describes the process of the peak broadening and is 
thus omitted. It is clear that the first-order expansion porportional to (w2  - w 4 )  in the 
‘diffusion term’ is equal to zero, because of its antisymmetric properties. Applying an 
assumption that the energy exchange per collision is small A o < < w  and using tech- 
niques described elsewhere we arrive at a simplified equation (Levich and Yakhot 
1977b) 

- B n ~ n ~ ~ ( w ’ / 2 - w ’ ’ ’ 2 ) $ ( t ) d 3 K ’  
at J 

where B is a constant and 

This equation conserves the total number of particles in the peak. We must admit that 
the energy conservation law is violated by our approximations but we believe that it is 
not of importance because the energy of this low energy part of the system is very 
small, tending to zero. 

The solution of (4.2) is: 

Non (U, 0 )  exp(-Bw ‘ / 2 F ( t > )  
3 /2  n(w ,  0) exp(-Bw”2F(t)) dw 

n =  

where 

(4.4) 

This solution consreves the total number of particles and leads to a 8-function form if  
F ( t )  increases with time, being positive. To show this let us use the simple intiial 
condition 

n(w,  0 ) a  e~p[-(w/wO)~/~] .  (4.5) 
It can be shown that the results do not depend on the shape of n(w ,  0) at large times 
and we use (4.5) as one of the possible initial conditions. Expression (4.4) with (4.5) 
must be inserted into (4.3) and the function F ( t )  can be found without difficulties. The 
result is 

where c = N i U i / 2 h 2  V 2 .  Thus at 

2h2wo v 2  
to  = 

NZUZ 

the solution is: 

(4.7) 

We can see that the Boltzmann equation can lead to a 8-function form or, in other 
words, to the appearance of coherence in the system. This fact is quite remarkable 
since we have explained above that in the final stages of the process when the peak is 
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narrow the Boltzmann equation does not work at all since all coherence effects are 
removed during its derivation. In fact the condition of validity for the Boltzmann 
equation is the following: 

2h2woV2 h 
tq = > - = Tcoherence. N i U ;  Eo (4.9) 

When this condition is not fulfilled we should use the appropriate equation of motion. 
We finish this section with a comment about an explosive solution we obtained 

above. Unfortunately, we cannot judge rigorously whether this explosive character of 
the solution is an artefact of our approximation or the result of a strong non-linearity 
implied in the equation. In principle explosive solutions of this type are well known in 
plasma physics and occur when the instability is strong.? 

5. The evolution of the coherence stage of the peak 

To proceed further with this investigation of the fate of the peaks we pass over now to 
the approximate equation (2.16). 

To begin with, it is easy to check that n~ = 8 ( K )  is the stationary solution of this 
equation. We will be looking for the solution of equation (2.16) which leads to 
8-function form with time and which describes the fast relaxation: 

IK: - K :  -k Kz(K3 - Kl)lf << 1. (5.1) 

This condition is the same as (2.15) in which it is assumed that the energy transfer per 
collision is small and thus the term proportional to lAKI2 is omitted. With this 
assumption and using the physical arguments discussed above, we can write: 

It is possible to solve equation (5.2) taking into account restriction (5.1) in the form: 

KZ(K3 - K1) -K:  + K : .  (5.3) 
Substituting (5.3) into (5.2) we have finally: 

t Note added in proof. We would like to stress that in all derivations shown above it is assumed that the low 
energy peak contains all would-be condensate particles. This is true if the perturbation is strong enough. In 
fact we assume that already at the first stages of evolution, when I,, <I,, the peak is so well developed 

that it contains Noa 1-- particles. After this peak has been formed and is narrow enough, the y2 
evolution is accelerated by the induced scattering process between the Bose particles. The term which tends to 
destroy this peak is presumably weaker, because as we see from (4.1) it is equal to 

a2n 
aw 

D T w i t h D E K ;  D + O ,  K + O  

If the perturbation is not too strong the other situation may occur. The peak will not be well developed and 
will contaiwan amount of particles smaller than No. In this case less then equilibrium number of particles 
might appear in the condensate. This corresponds effectively to the temperature higher than TF. The further 
relaxation to TF might be of quasi-equilibrium nature described by (3.7). 
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where r = U?jt2/2A2 V 2  and 

Equation (5.4) conserves the total number of particles in the peak and the solution can 
be written readily: 

with F ( ~ ) = j o 4 ( X ) d X .  Based on the results of previous sections we assume that 
n K ( O ) +  constant > 0 at K + 0 and for f + 03 we can write if F ( t )  grows being positive 
(this will be checked further) 

n K  a ~ ~ ' ~ ( 7 )  exp(-K2F(T)). (5.7) 

Recalling the definition (5.5) we obtain the following equation for F ( T ) :  

(5 .8 )  
d F  
-= 4 ( T ) K F 5 I 2  1 exp(-K2F)K d K  
d r  

and consequently: 

1 ,  F ( T )  = - e 
KO (5 .9 )  

where K~ is the dimensional constant. Thus 
- K 2 e 7  

nK a eT7 e 

which leads to a 8-function at t + 03. The characteristic time (5.5) is the same as that 
derived above on the basis of dimensionality considerations. 

The main drawback of the derivation given in this section is that it does not take 
into account the changes of the energy spectrum in the system which accompany the 
appearance of coherence. This problem will be treated in the next section while here 
we would like to discuss once more the procedure we have been using till now. 

The Boltzmann equation (2.16) describes a balance between transitions per second 
from and to a state with given momentum K. This equation is written in a second- 
order of perturbation theory and it is easy to understand that coefficients of 
~in~(Awt)/[(Aw)~t]  correspond to the non-diagonal matrix elements of the interaction 
operator. 

We can readily conclude that these transitions are not the only effect of inter- 
action. The frequencies of the modes are changed and their shifts can be estimated if 
one calculates the diagonal matrix elements of this interaction. 

6. Extreme coherence in evolution: formation of a new phase 

We would like to emphasise that comparatively simple ways of getting a solution for 
the complicated non-linear equations we deal with are possible only because the 
evolution which we are most interested in occurs in a narrow interval in momentum 
space. Similar situations are well known in different branches of non-linear physics: in 
optics, in plasma physics, etc. There the  propagation and development of a narrow 
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wave packet are thoroughly investigated and well understood (Zakharov 1972). In 
fact we use very similar techniques and methods with respect to non-linear dynamics 
of phase transitions, To illustrate the similarity let us consider the simple situation 
when we have only four modes in the system interacting with each other. Then, as is 
well known, if the frequencies of these four modes satisfy the resonance condition 
w1+ w2 = w3 +04 the intensive enhancement of one  or  two modes at the expense of 
the others may occur. For example, the amplitude of modes 1, 3 may rise until 2 and 4 
shrink to zero. Afterwards the process may be reversed. The  situation is exactly 
analogous to that of parametric resonance. If the resonance condition is not fulfilled 
there is no  parametric resonance because of the beats which effectively damp the 
growth of amplitudes. One  should not mix together the resonance condition with the 
conservation of energy in the microscopic act of collision between the waves. On the 
contrary the resonance approximation is opposite t o  the approximation when the 
energy is conserved during the act of collision. From the general quantum mechanical 
point of view it is clear that the wave’s frequency is changed due  to non-linear waves 
interacting. 

If the system contains an  infinite number of strongly coupled modes the situation is 
profoundly more complex. The  evolution in this case is governed by the system of 
Dyson-Wild equations (Zakharov and Lvov 1975). However only in simple cases are 
these equations really useful. The  first case is an approximation of weak turbulence 
which we have discussed above. The  second one  is when the spectral width of 
excitations is small. One  can easily show that the S function is an exact stationary 
solution for this system. Though it is difficult to prove that this stationary solution is 
indeed achieved, it is logical to assume, physical considerations, that the simplest 
stable solution is t o  be chosen. Our  argument is, however, even milder than that. W e  
assume that in a narrow band of modes, strongly coupled with each other, complete 
coherence is achieved on the time scale of dynamical interaction. Afterwards we are 
able to apply the envelope approximation, i.e. approximation in which one  neglects 
the fine structure of interaction within the spectral band and considers only the 
envelope motion. The  time scale of dynamic interaction is given by (2.17). 

For the details of the envelope approximation we refer to work by Zakharov 
(1972). In this approach one  encounters a variety of non-linear phenomena such as 
self-focusing, instability in coordinate space, etc. With respect to our  problem we will 
show, however, that no such spectacular pecularities occur. In the envelope approxi- 
mation the Hamiltonian equation of motion for the very narrow peak is given by (see 
Zakharov 1972) 

a a 
at ar 

(-+ iGb(r)+ vk,, -+ w iOv:) ak(r> = 0 

there ko is the central momentum of the peak which tends to  0 with time, 

(6.3) 

Generally speaking v k ,  w i  and the amplitude are now functions of coordinates which 
reflects the spatial coherence in the system. The  meaning of equation (6.1) is that we 
express the interaction in the exact dynamic equation in the form of a renormalised 
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frequency &. On the other hand in (6.1) we neglect collisions. In the sense the 
approximation of (6.1) is similar to the mean-field approximation in the usual Boltz- 
mann equations, though it corresponds to the completely opposite case of a coherent 
rather than a random system. 

Equation (6.1) has a simple homoheneous solution 

a = a. exp(-i&,,t) (6.4) 

which represents a homogeneous wave propagating with its frequency altered as a 
result of interaction. Since wk + 0 the altered frequency should give us the energy of 
the ground state of Bose condensate. It is easy to see that the value of the energy shift 
coincides exactly with the corresponding expression of Bogolubov for the ground state 
energy of a weakly interacting Bose gas. The time during which the process takes 
place is again determined either by the uncertainty principle as h V/UoNo or from the 
quasi-Boltzmann equation as was done in the previous section. The results are 
obviously identical. However, this is not the end of the story. Indeed we have not 
proved that the homogeneous solution is the stable one with respect to non-homo- 
geneous perturbations. If we look for the solution of (6.1) in a form 

we will easily derive the dispersion relation for n(q) (Lvov and Rubenchik 1977): 

When ko goes to zero, i.e. the ground state is formed, equation (5.7) coincides with 
well known Lee, Yang and Huang spectrum of excitations. 

The conclusions we draw are the following. The homogeneous solution cor- 
responding to a very narrow peak of non-equilibrium states is stable in coordinate 
space. Being unstable in the phase space it forms an exact Bose coordinate, i.e. 
ground state, during the time given above. The spectrum of excitations which appears 
as a result of perturbation of the homogeneous solution is the usual phonon spectrum, 
when the width of the peak tends to zero. 

7. The critical region 

In 9: 2 we have derived the dynamic equation (2.24) appropriate for the critical region 
and valid for modes K < 1/[ which can even be in a strongly non-equilibrium state as 
well. If the final temperature is within the critical region then in the equilibrium final 
state the superfluid fraction is proportional to the correlation length [ - l / iT - T,1" 
exactly as in an ideal Bose gas. Therefore we may expect that only modes which 
become non-equilibrium states and are unstable in the momentum-space peak also 
have K < 1/[. But for these nodes equation (2.24) is valid whether they are close to or 
far from equilibrium. 

The only complication arises from the fact that now the renormalised vertex 
consists of two parts: the first is the constant which is proportional to E and the second 
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is K dependent:f 

r =  ir,+ DK2 0 0 .  
- i w + D K 2  

The imaginary part of r brings new features to the kinetic equation which can be 
derived from (2.24). It is easy to check that: 

in which ZBB is proportional to (Re r)2: 

R e  r = 00 ( 1 + W 2  + D 2 K 4  . D2K4 ) (7.3) 

In the critical region where D + CO we can neglect the K-dependence of R e  r. The 
same occurs when we are interested in the narrow region of K near to IK 1 = 0. It is 
evident that in this case /Kf2-K21<< (K - K’)’ and we can neglect W K  - w K ,  in (7.2) 
and (7.3) in comparison with DK2. We have finally: 

and now I B B a  E’ .  

In addition to a new diffusion term which is linear equation (7.4) also contains the 
non-linear (apart from f B B )  contribution from the integrated out modes with large IK 1 .  
We have pointed out that these modes can be treated as an additional heat bath and 
this can lead to Bose condensate formation even if f B B  = 0 as in the case of an ideal 
Bose gas discussed in 3: 2 .  We are not going to discuss the role of these processes in 
the course of Bose condensation because at the final stages of relaxation, when nK >> 1, 
the condensation is governed by ZBB which is the largest term in equation (7.4). Thus 
we can conclude that the most interesting stages of the phase transition in the critical 
region are in principle the same as those far from T,.i 

8. Conclusions 

Wave studied the dynamics of Bose condensation in an interacting Bose gas. It is 
shown that: 

(I)  The dynamics of this phase transition is essentially a non-equilibrium 
phenomenon. The overall picture of the time evolution of the formation of the new 
phase is the following. During the first stages of relaxation the particle-heat bath 
interaction plays a most important role. The system is still random and thus the 

+Nore added in proof. In fact there should be several K dependent terms in (7.1) due to the different 
hydrodynamic modes. However, for OUT purposes it is sufficient to use only one typical term. 
I: Note added in proof. We might consider as a time of Bose condensation the time during which coherence is 
achieved within the narrow band. This time is proportional to (l/No)crlT- TJ”,  so that here we also 
indicate by No the critical slowing down. 

One can see that both in the critical region and outside it the very last stage of relaxation equilibrium is 
governed by the second term in (7.4). Physically the equilibrium is finally achieved due to the transfer of 
energy within the coherent band to the ‘heat bath’, the short wavelength part of the system. In the critical 
region this time is certainly much larger than the time scale of dynamic interaction. 
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Boltzmann equation can be used. At this stage of relaxation the peak of the dis- 
tribution function is created in the small-K region. The maximum of this peak grows 
linearly with time: n m a x a  t while the width of this peak decreases. 

After this peak is high enough the most important part of the interaction which 
governs relaxation is the non-linear interaction between the Bose particles. At  those 
stages in which coherence is not yet strongly developed one can use the Boltzmann 
equation. The peak growth becomes of explosive character. 

When this peak is too narrow and coherence starts to be developed in the system, 
the Boltzmann equation is no longer valid+. 

(2) We have shown how to derive the Halperin-Hohenberg-Siggia macroscopic 
equations for liquid helium using purely microscopic considerations. 

(3) The smooth and gradual (in time) appearance of coherence properties in the 
initially random system is the crucial stage in the theory. The profound analogies with 
various non-linear problems in optics, physics of plasmas and hydrodynamics are 
understood. 

(4) We expect that the seond-order phase transitions in spin systems are 
dynamically similar to Bose condensation considered in this paper. 

Note added in proof. Qualitatively we may use the ‘reversible’ quasi-Boltzmann equation described above, 
However i t  is important to realize that the system in the course of phase transition passes through a stage 
which may be identified as a period of strong turbulence. This period is followed by the stage of developed 
coherence. The phonon type spectrum of excitations is obtained by considering the equations of motion in the 
envelope approximation. I n  the critical region the time of Bose condensation divergents as 1 T -  T,J”. This 
time is determined by the reversible mode-mode coupling terms in the equation of motion. The final stage of 
relaxation to equilibrium is determined by disspitative interaction between the coherent and stochastic modes 
in the system. 
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